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ABSTRACT 2 <70 LS’r

The steady flow of a highly rarefied ionized gas through a channel with
a magnetic field normal to the channel wall is studied. The solution is ob-
tained by a Monte Carlo procedure. This method consists of following sample
ions through the channel. By tallying properties of these ions as they pass
scoring cross sections of the channel, the various local properties of the
flows such as density, mass flows, energies, and wall shear stress are ob-
tained. These results for the small magnetic field cases were compared with
the limiting analytical solutions for no magnetic field and were in good -
agreement with them. /6Zy;t;t)v1_,

I. INTRODUCTION “

The equations to be solved for the flow of a fully ionized collisionless
rarefied gas through a channel are complex and not readily solvable by the
usual analytical procedures, Pai (1962). The Monte Carlo procedure was used
in the present case to obtain the various flow characteristics and to give
an insight into the behavior of the flow of a collisionless rarefied fully
ionized gas through a flat plate channel. These solutions can be used for
comparison with other techniques and also to illustrate the use of the Monte
Carlo technique for similar types of problems.

The present model consists of a finite length channel of infinite depth
as shown in Fig. 1. There is a uniform magnetic fieid Bz normal to the

channel wall. The left and right end of the channel are open to reservoirs
™™ X-52033
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containing a fully ionized gas in a Maxwellian distribution of velocities at
the same temperatures but different densities and pressures. The mean free
path in the gas is considered large compared with the dimensions of the
channel so that interionic collision effects can be neglected in the channel.
The only collisions inside the channel will be by the ions with the walls.
The ions are assumed to be reflected from the walls diffusely with a velocity
distribution based on the temperature of the wall. It is assumed that the
wall is at the same temperature as the reservoirs. The electrical charge of
the molecule is assumed unchanged by the wall reflection. Other conditions
can be readily assumed using a similar Monte Carlo procedure. The ionized
gas can be considered to be composed of positive, negative, and neutral mole-
cules. In the present model each specie can be treated independently since
the interaction between them is considered negligible, then these solutions
can be summed to give the overall results.

The Monte Carlo procedure consists of following the probable history of
a sample charged ion through the channel. By use of a high-speed electronic
computor a large number of these sample histories can be carried out in a
short time and from these the desired mean quantities are obtained. This
method follows the techniques used in solving thermal radiation problems by
Monte Carlo as described by Howell and Perlmutter (1963).

The mass through-flow profile and transverse mass flow, the local den-
sity, and temperatures as well as the wall shear stress distribution are
given. These results are obtained by scoring various properties of the mole-
cules as they pass different cross sections of the channel. The solution for
the case of neutral molecules or the case of negligible magnetic field has
been obtained analytically by Perlmutter (1964) and is used as a limiting

case check on the Monte Carlo results.



II. HISTORY OF SAMPLE ION

The model (Fig. 1) consists of two plates whose length divided by the
channel height is 1. The plates are infinite in depth. There is a magnetic
field of strength B2 normal to the plates. The gas in the left reservoir
has a density ey, while the right reservoir is at PR The molecules are of
mass M and charge e. All of the sample ion histories begin at the channel
entrance Xy = 0. The number of molecules CL that each sample molecule en-

tering from the left reservoir represents is given by

L - (1)

where my, 1is the mass flow rate per unit area, my, = pL/an/ZB, entering the
channel (Kennard (1939)), Ny, is the number of trial molecules used per unit
‘'entrance area per unit time.

The Monte Carlo flow chart used in the present calculations is shown in
Fig. 2. The position Xx5; representing the height at which the sample ion
enters the channel is given by R, where R 1is a randomly chosen number be-
tween O and 1. This is because the molecules are equally likely to enter
the channel at any value of xp. The magnitude of the speed of the sample

ion Vi’ and the angles ¥ and 6 vhich determine its direction, as derived

in the appendix A (Eq. (A5) or (A9)), can be obtained from

. 2
R, =(1+ l; vz/ra or ﬁz = - ln(Rer) (2a)
ra ra
0
Rg = ox (2b)
Ry = sin%y (2¢)

where each R represents a new random number, v 1is the dimensionless
velocity given in the nomenclature and ranges from O to «, ¥ is the cone angle

from O to =x/2, and 6 is the polar angle from O to 2x. Then the initial
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components of velocity of the sample molecule that enters the channel from the

left reservoir are

Vi1, = vV cos ¥ (3a)
Vor, = V 5in ¥ sin 6 (3b)
Vzy, = Vv sin ¥ cos 8 (3c)

By choosing random numbers between O and 1, we can obtain a velocity and
direction for the molecule entering the channel that, when taken over a large
number of trials, will satisfy the correct theoretical distribution as given
in Eq. (A3). These velocities are determined at (1) in the flow chart, where
( ) refers to a particular location in the flow chart. After the ions enter

the channel, their behavior will be determined by the relations'(Patterson

(1962))
dvl
TR (42)
EXE =0 (4b)
art
dV3
T - M (4c)

which are the equations of motion for an ion through a magnetic field. The T
is the nondimensional time given in the nomenclature. These equations can be

solved to give the velocity components as a function of time

V] = Vj; COS T - Vz; sin T (5a)
Vg = vi; Sin T + vg3 cos T (5c)

where the subscript 1 refers to time 7 = O.
The positions of the molecule as a function of time can be obtained from
(%7 - x74) = v sin T + vgi(cos 7 - 1) (6a)

(xp = Xo05) = VoiT (6b)



S
(x3 - Xz3) = Vz; sin T + vy;(1 - cos 1) (6c)
The ion will travel in a helical path that is circular in the Xy ;Xz-plane and
will move with a constant component of velocity in the *x,-direction. The
radius of the circular ion path in the X1 ,Xz-plane, called the gyromagnetic

radius, divided by the distance between the plates is

(%, + vE)° 9

The average gyromagnetic radius divided by the width of the channel for all

the molecules based on conditions in the left reservoir is

r = /‘V‘z 4 v‘z \1/2 l ’ ( \
&\ L/ BDw B

which is equal to the Larmor radius divided by the width of the channel. The
term ;g; is equal to L//)VELfM d3v. The details of the remaining history
of the ion is given in appendix B. The ion is followed through fhe channel
until it leaves from either end and then a new ion is started. This is con-
tinued until a preset number of histories are carried out.
III. MEAN FLOW VALUES FROM SAMPLE HISTORIES
A. Transport of Some Ion Property Q in Channel

At some point along the channel length Xy = £, the channel height is
divided into increments of width Ax5.  In the present case 20 increments
across the channel height were used. Increment p is given by

= (XZ/AKZ)integer + 1. The net amount of Q that is being carried across the

incremental area AMZ is then given by

CLésj Q 7 >L,£;p X Z Z >

Rs,P: - [qur &V (9
D Ax, D Ax, M Ja (%)

where the subscripts L and R denote the sample molecule origin in the left

or right reservoir. The terms S* and S~ are the number of sample
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molecules passing through the increment in the positive or negative
X1 directions, respectively. Substituting from the definition of C from

Eq. (1) we obtain

By (B
o, <ZQ- ZQL,L,p+mR ZQ- QR,E,p_
Ny

= V1R (10)
D Ax, N, D Ax, 1

When my, = mp, pV1Q = leQmL=mR. Subtracting this from Eq. (10) gives

. R
iq-i Q) PV1Q - V1 Gy —
A L,Sp _ QmLmR

D AxoNy, h mp, - mp (11)

The above operation is possible because there is no interaction.between the
. + ST
molecules and therefore Q - 5_\ Q (NLD Ax,) is independent
/., L,%,p ,
of my. A similar relation holds for the sample ions entering from the right
reservoir.

l. Mass flow profile through channel. - Since the local mass flow through

the channel is given by pu; = M u/\V'lf a3V, @ in Eq. (10) for this case

is 1. The wu; 1is the local mean through-flow velocity in the Xy -direction
and is equal to u/’V’lf d3V. The numerical calculations showed that the
results for [(S"’ - S-)L,S,p] /(NLD Axp) were equal at x; and 1l - X3.

By symmetry [(8* - §7)p,x ,p)/(MP &xp) 1s equal to [-(s* - 57)R,1-x,,0)/
(NRD Axp). Using these relations in Eq. (10) gives

+ -
puy (s* - 87),¢,p

= (12)
m, - mR ND &xs

Relating this to Eq. (11) shows that pulmL_mR = 0, that is, when the two

reservoirs are at the same condition there is no net through-flow anywhere
in the channel. Equation (12) shows that, for this case, it is only necessary
to consider the sample molecules originating in the left reservoir to obtain

the complete solution. The axial mass profile results are shown in Fig. 3.
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The curves are symmetric between the upper and lower halves of the channel
(pup)y, = (pul)l_xz and also symmetric around the front and back ends of the
channel (pul)Xl = (pul)l-xl'

The solid line, which is the analytical solution for rg = = (Perlmutter,
(1964)) is in good agreement with the Monte Carlo results for r, of 1000.
Thus, for this value of rg, the solution is close to the limiting case for
no magnetic field for this range of 1's. Also the fact that the results
are in agreement for the two different methods indicates the validity of
the Monte Carlo procedure.

The average mass 10w through

. by summing the results for each increment and then dividing by the number of

1/Ax
+
(pul)av_ E s (13)

L T "R DNL L,%,p

increments:

where (S+)L 1,p is the total number of trial molecules leaving the right
)
end of the channel through the increment &x,. These results are shown in

Fig. 4. It can be seen that as r, decreases, the mass flow through the

a
channel decreases. This is true because, for small values of r,, the
charged molecules are trapped to rotate in small circular orbits around

the magnetic lines of force.

2. Transverse mass flow. - The flow in the xz or depth direction is

<]
given by puz = M‘Jéq Vzf dV; then in Eq. (10) for this case Q = Vz/Vj.

The numerical calculations showed that the results for

st 8-
DN
vy vy L,%,p
: Ni,D Axo £ (14)

were the same at x; and 1 - Xx3- Following the same procedure as followed

before, (pus)mL___mR = 0, and we obtain



s+ S_
puz _ vl vl L,.ﬁ,p (15)
my, - mR N D Axo

As for puy, the flow puz 1is symmetric around the midplane parallel to the
channel walls puz, Xg = = puz l-xz and it is also symmetrical around the mid-
plane between the front and rea? ends of the channel, 9“5,xl = puz 1-xp"

The average transverse flow through the channel can then be obtained by

summing the flow across the channel and dividing by the channel height:

l/szf S vy o v
(pus)av_ Z_, LZJ&VI) Z_,\

m, - mp ND

ﬂm

JL’z’P (16)

These results are shown in Fig. 5. When there is no magnetic field ’l/fa =0
the transverse flow is zero. The transverse flow begins to decrease for
large values of l/ra corresponding to large magnetic fields. This is true
because the molecules are making orbits of very small radii around the mag-
netic lines of force, thereby preventing any large mass flows. The results
indicate that the maximum value of the transverse flow occurs in the middle of
the channel for values of ry of approximately half the channel length. The

largest transverse flows occur in the smallest length channels, 1 = 0.1.

3. Density profile. - The local density is given by p =M U/wf dv. Then

= l/Vl in Eq. (10). The numerical calculations obeyed the relation

J)L X0 z "LJL,1-x1,0

D szNLZ-\/E ra D AxoNp 2-+/x ra

=1 (17)

Then from symmetry
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/ st S / s+ s-
& EHE:L ( FIANRY
V- V- V-
1 1 L,Xl,P _ 1 { , l R, Z -X7,P (]_8)
-1 -
D Ax, N 2~/ r; D AxpNg2-/% ra

Following the same procedure as before, we find that me=mR = PR, and we

p - DR \Z Z l L ‘t’p (19)

D AXzNL{J 2-/1 ra

obtain

These results are shown in Fig. 6. The limiting solution of zero mag-
netic field agreed well with the Monte Carlo solution for ry, = 1000. As
r; becomes smaller, the densities in the channel near the reservoirs approach
the density of the reservoir more closely. The densities are symmetrical
around the midplane x, = 1/2

<111>=@;ﬂ» (20)
PL =) \PL T PR/,
2

and are related around the midplane X = 1/2 by

pP-p P-p
<__‘%) * <——TIQL> =1 (21)
PL, - PR X1 PL - PR 1-x;
4. Local kinetic energy. - The kinetic energy at some location is given

by pE =(M/2V‘ VZf @V. Then Q in Eq. (10) for this case is VZ/2V,. The

numerical calculations obeyed the relation

s+ S~ [s* -
E v, )" v, v v
1 1 L:xl:P L= 1 1 L:Z"Xl}P 1 (22)
+ =
5+/n D &x Ny r, 3+/nD Ax Ny,

Then following the same procedure as before we find that <pE)mL=mR = 393/484,
which is the kinetic energy in the reservoir (Perlmutter (1964)) and the

solution reduces to
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S+ s~

2 v v_2>
2B (om) - op Z(vjz (Vl

PL- PR T 32 D axr, L.L,p (238)

Again there is symmetry around the midplane Xp = 1/2 of the channel,

2 [ a2
4B 4B%
PL, = PR PL, = PR
Xo | l-xz
vhile around the plane x3 = 1/2 of the channel,
2 2
4
28 (cE) - og £ (E) - og
3 + |3 =1 (25)
L P, = PR J L P, - PR J
Xl Z-XJ_
For zero magnetic field (Perlmutter (1964)) it was shown that
(PE)y =~ = 3p/4p2. For this case
2
4B
— (pE) - p-p
3 PR = _____li_ (23b)
P, = PR PL, - PR A

The results plotted in Fig. 6 show that for smaller values of ry, the
value of (482/3)(pE) is no longer equal to p as for the nonmagnetic case,
but has decreased near the entrance of the channel and increased near the
exit. This is true because the higher velocity molecules have a larger gyro-
magnetic radius and so diffuse more readily down the channel than the slower
moving molecules.

B. Collision Rate With Walls
The mass flow rate incident per unit area on the upper wall and then
reflected can be obtained as follows: The channel wall is divided into in-
crements of width Axl. In the present calculations, 20 increments along

the channel surface were used. At a particular increment gq, given by

q = (Xl/Axl)integer + 1, the number of sample molecules colliding into this
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increment is scored:

C.(8 )y  cgr(8y4)
L'"q’'L R\°g/R _ 1
D 2] + 5 l—me=l/O-.V2de (26)

This can be rewritten as

mp(S,)
m = 5 ULt R (27)
N,D Axy RD &%)
From the numerical calculations it was noted that
(SL,q)Xl (SL:Q)Z'Xl (28)
+ =
Ny D &xy Ny D Axy
Since by symmetry
(SL)Q.)Z-XJ_ (SRJq)Xl (
ND Ax; | NgD Ax 29)
we find that (mw)mL=mR = mp and Eg. (26) becomes
-m (s_)

m, - mg NyD Axy
These results are shown in Fig. 7. Again there is good agreement between the
limiting analytical solution for r, =% and the Monte Carlo solution for

ry = 1000. For the smaller values of r, the mass flow reflected from the

a
wall near the reservoir is closer to the mass flow into the reservoir. These
results are the same fof the upper and lower wall and are related around the
channel midplane x; = 2/2 by
- -
v D TR) o, (ZITR) (1)
mp - mp mp, - mR ,
xq -Xq
C. Shear Stress at Wall
The shear stress on the surface in the xj-direction is given by

Px1oxp
where f V'f @3V = 0. Since up at the wall is zero then (-pViVéLis equal

to (-pVin) Since the ions are reflected diffusely they do not contribute

W

1
= (—pViVé) , Where V' is the random component of velocity V = V' + u,.
‘w -
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to the surface shear so we obtain

Sq Sq
e\ " V1 Crl\\ V1
levz Z:J L ZLJ R
‘As before, from the numerical calculations,
Sq Sq
Bu (I
L,x L,l-x
. i (33)
D Ax Ny, D AxqN,
and proceeding in a similar manner, we find (p V.) = 0 and obtain
l 2 W, mp=mR
from Eq. (32)
S
- > n
1
(DViV2>W L
— - = (=4)
mf  mf AxlNLDra(an/ 2)
P, PR

These results are shown in Fig. 8 and are the same on the upper and lower -
walls. The results are also symmetrical around xl/l = 0.5. The shear stress
for r of 1000 is seen to agree well with the nonmagnetic analytical solu-

a

tion. The shear stress is seen to decrease for smaller values of r. Since
this corresponds to smaller values of mass flow through the channel, this re-
sult would be exﬁected.
Iv. CONCLUSIONS

The effect of the increasing magnetic field is to reduce the mass flow
of the ions through the channel. The magnetic field also causes a transverse
mass ion flow to occur perpendicular to the through-flow and parallel to the
channel walls. This transverse flow reaches a maximum and then decreases as

the magnetic field becomes stronger. The decrease is due to the strong mag-

netic field trapping the charged particles.
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The Monte Carlo solution worked well with this problem. The major draw-
back was the large amount of computer time necessary to run the analysis.
Generally, 200,000 sample ions were needed for each case to reduce the
scatter in the results. A lesser number of trials gave points falling
around the correct solution but with larger scatter. The trials were run
on an IBM 7094 computer and each case ran approximately 45 minutes. The
amount of time each sample ion ran would increase with longer channels and
higher magnetic fields. The scatter is decreased if a large number of sample
ions are tallied at a particular position so that more meaningful statistical
averages can be obtained. More advanced techniques, such as splitting or
Russian roulette, could be used to decre;se the computing time. With this
Monte Carlo procedure, other boundary conditions can readily be used and the
method could be extended to include interionic collisions.

APPENDIX A - ENTERING ION SPEED AND DIRECTION
The number of molecules moving in the xj;-direction fﬁ dSV, where

v = dV, dVy dVz, with the velocity in the range a%v  for an assumed

Maxwellian distribution, is given by

3
PP 2y2
£ adv = =BV
M <3/ 2

where V2 = V% + Vg + Vg. The number of molecules entering the channel per

dv, dv, dvs ()

unit time per unit area in the incremental velocity range of d5V from the
left reservoir is given by dmy,/M = Vlfﬁ d%v. If this is integrated over Vi
from O to w, Vo and Vz from -» to +o we obtain for the total flow
entering the channel my, = pL/(ZBnl/Z). The distribution of velocities of

the ions entering the channel from the left reservoir then can be written as

2ptm,  _p2y2
e

+ _ P L 3
Vv, Ty dav = vy a-v (A2)

This can be transformed into spherical coordinates where Vq = V cos ¥;
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Vo = V sin ¥ sin 6; V3 = V sin ¥ cos 6, where V¥ is the cone angle
measured from the xl-axis, and 6 1is the polar angle measured from the
X sXz-plane. Then (A2) can be written as
Vg av

my,
This gives the fraction of all the molecules in the ranges dV d6 d§y entering

4
- zﬁ V3e-p2v2 cos ¥ sin ¥ Ay 49 aAvV (A3)

the channel. The fraction of molecules that are in the velocity range 4V 1is
given by taking the marginal distribution fM,V which is obtained by inte-
grating (A3) over 6 from O to 2x and ¥ from O to =n/2 to give

-BeV2 4y (Ade)

— opdy3
fM,V dv = 2B*V-e
Similarly, the marginal frequencies for 6 and V¢ after integrating over V

from O to « are

de
fiy,o 46 = o (A4D)
fiy,y Q¥ = 2 cos ¥ sin ¥ ay (Adc)
We can pick from this distribution by setting the random number R equal
be
to the cumulative distribution function, R = fo‘ dx' as in Howell and
-0

Perlmutter (1963). Then the machine can pick a random number R and solve
for the random variable x from the above relation. For Egs. (A4a), (A4b),

and (A4c), this gives

-2 /e
R,=1-Ry=(1+ p2v2)e-B2VE _ Q_+-X;>e'v /a (A58)
Ta
)
Rg = o~ (A5D)
Ry = siny (Asc)

Solving for v in Eq. (ASa) for a given Ry 1s difficult because of its
form; however, v could be obtained in the following manner. If Eq. (A2) is

vritten in cylindrical coordinates, we obtain
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+ 33 2
Vify &V o -BEV BevE

1 2, ~B7Vr ae
= 2B“Vye dv, 2B“V e av

r 2n (26)

where Vy = Vp, V, = V. cos 6 and Vz = V.. sin 6. Then as before the new

marginal distributions are

- BZVZ

2
fy,y, ¥y = 2BVye T 4 avy (A7a)
£ av.. = 2p%v_e-B%VE ay (A7b)
This gives, as before,
BEVE = -1n R, (A8a)
B2VE = -1n Ry (A8D)
Then
2 2
2 \'a v
\' 1 r
5 =—5+—%=-lnR - 1o R, = -1n RiRy (a9)
Ta Ta Tg

This means we can pick v by using two random numbers in Egq. (A9).
APPENDIX B - DETAILS OF ION HISTORY
We can define Vi = VR cos ¥ and Vz = VR sin v, while Vi = VR COs 18]
and vz; = vy sin vy (Fig. 9). Substitution into Eq. (5a) or (5c) gives

T=7 -7 The angle T can then be calculated from

Y = sin"l(;§> (B1)

The component of velocity vp 1is unchanged by the magnetic field, and the
time at which the sample ion will strike the upper or lower wall after enter-
ing the channel is 1T, = (1 - XEi)/VZi or T, = 'XZi/VZi (see Fig. 2 (3)).
Also, the position X1 at time T can be determined from Eq. (6a) tovbe

X1 - X31i = VR sin(t + Yi) - sin Yi] = VR 2 sin % COS(Yi + %) (B2)

It is necessary to know the time tg that a molecule will reach some given

position x; = £. This can be obtained from Egs. (5c) and (6a) since

£ - %y = Vg - Vg5 (B3)
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Vip = i(vg - vg:)l/z (B3)
vwhere the + and - are used according to the direction the molecule is
traveling. Substitution into Eq. (Bl) gives Y, which can be used to find
the time, 1p = g - Y- With the time known, the various parameters that are
scored can be obtained. From Eq. (6a) evaluated at time T, the posi-
tion xy,, where the molecule strikes the wall is obtained (5).

However, the sample molecule may reach a maximum value of Xy and then
start to circle back before striking the wall. This maximum value of x3
will occur in this case at 71, = %/2 - v; (see Fig. 9, (4)). Then if

max

T is less than =t the molecule will turn before striking the wall, and

max W’
X) max 1S evaluated at Tpo. (6). If the molecule passes a value of
xi = £ (7), its important characteristics are tallied {(8). In the present -
case EA was taken at O, 2/4, Z/Z, 31/4, and I. It may pass the exit plane
(9) at which point it is tallied and a new molecule is started. If the mole-
cule strikes the wall this is scored in the appropriate wall increment (ll),
and the molecule is reemitted from this point in a new direction with a new
velocity (12). The new direction is picked from a population based on diffuse
reflections from the walls, and a new velocity from a population based on a
wall temperature which in this case is taken equal to the tgmperature of the
reservoir. This means Vv, 6, ¥ are obtained from Egs. (2a), (2b), and (2c).
The components of velocity from the lower wall are now given by,(lza)
Vix = V sin ¥ sin 6
Vo) =V cos ¥ (B4)

Vg) =V sin ¥ cos 6

while for the upper walls, {12b)
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Viu = v sin w sin 6
Vg, = -V cos ¥ (B5)
vSp = v sin ¥ cos 6

If the molecule is reflected from the wall with a positive vl-component, the
molecule goes through a similar procedure as just described (13). If the
molecule is reemitted with a negative component of Vi then 1, 1is compared
with Tpip, the time for the molecule to reach its minimum value of x. As

seen from Fig. 9 this is given by = = (3n/2) - v; (14). Then X}, min 18

min
calculated from whichever time is smaller Tpi, Or Tygi] (15). Again the

.ime the molecule passes a scoring posi-

o AR VN 8 53 S L T

tion x; = £ (16). If the molecule leaves the entrance it is scored (17)
and a new molecule is started; however, if it does not leave through the
entrance it may hit the wall (11) in which case it is tallied and reemitted
as discussed before. If it does not hit the wall or leave the channel, it
will start to circle back, and now T .. = Tp. +* (Fig. 9) and the usual
procedure continued (19). If it reaches its maximum value of x; and does
not leave the end of the channel or strike the wall, it will again circle
back with Tp;, = % + Tpo (Fig. 9) and the molecule is followed as
before (20). When DN molecules have been followed the results are printed
out and the program is stopped (21).

LIST OF SYMBOLS
Cc number of molecules represented by sample molecule, m/MN
D height of channel
e charge of molecule
f velocity distribution of molecules
™ Maxwel;ian velocity distribution

fy Maxwellian distribution of molecules moving in positive xj-direction



=

VR

%) %o, %5

N

= w

18
scoring cross section along X
length of channel divided by height
mass of molecule
mass flow rate per unit area
mass flow in from left reservoir, pL/(an/ZB)
number of trial molecules entering channel per unit time per
unit area
number of sample molecule
pressure
shear stress on
quantity being carried by sample ion
random number between O and 1
gas constant
Larmor radius divided by chamnel height, (BDw)~1
number of molecules passing through increment
temperature
components of mean flow
molecular velocity
dimensionless molecular velocity, V/Dw
dimensionless velocity in xl,x3—plane
coordiretes divided by channel height D
section of channel
parameter (ZRT)'l/2
angle Eq. (Bl)
polar angle
density
time multiplied by cyclotron frequency

cone angle
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w eBg/M cyclotron frequency
Subscripts:

i initial time, 7 = 0

L " left reservoir

£ location along x;

M marginal distribution

m Maxwellian

P increment number along Xo

q increment number along X1

R right reservoir

w wall

Asp lower or upper wall, respectively
0 integration over all velocities in plus
Superscripts:

(") mean value, u/w( )£ adv

+

in positive Xj-direction
in negative Xy-direction

undirected component
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Figure 3. - Axial mass flow profiles.
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Figure 5. - Concluded, - Transverse flow across channel.
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